

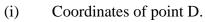
## INDIAN SCHOOL AL WADI AL KABIR Post Mid-Term Revision Paper (2023-24) Sub: MATHEMATICS

Class: IX Sub: MATHEMATICS Max Marks: 80 Date: 20/11/2023 Time:3 hours

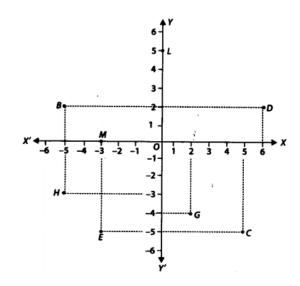
#### **General Instructions:**

- 1. This question paper is divided into 5 sections- A, B, C, D and E.
- 2. Section A-(MCQ) comprises of 18 questions of 1 mark each and 2 Assertion Reasoning questions of 1 mark each.
- 3. Section B-(Short answer) comprises of 5 questions of 2 marks each.
- 4. Section C-(Long answer) comprises of 6 questions of 3 marks each.
- 5. Section D- (Long answer) comprises of 4 questions of 5 marks each.
- 6. Section E- Comprises of 3 Case study-based questions of 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- 7. All questions are compulsory. However, an internal choice in 2 Qs of 2marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

|       |                                                                                                                                  | been provided                                                  | in th | ie 2 marks questions o | † 5e   | ction E.              |   |         |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------|------------------------|--------|-----------------------|---|---------|--|--|
|       |                                                                                                                                  |                                                                |       | Section A              |        | o ala)                |   |         |  |  |
|       |                                                                                                                                  |                                                                |       | PART-1(MCQ-1 n         | nark e | eacn)                 |   |         |  |  |
| Q.1.  | The v                                                                                                                            | value of $\sqrt[4]{625^{-2}}$ is:                              |       |                        |        |                       |   |         |  |  |
|       | A                                                                                                                                | $\frac{1}{25}$                                                 | В     | $\frac{1}{50}$         | С      | 50                    | D | 25      |  |  |
| Q.2.  | By applying SAS congruence rule, you want to establish that $\triangle PQR \cong \triangle FED$ . It is given that $PQ = FE$ and |                                                                |       |                        |        |                       |   |         |  |  |
|       | RP = DF. What additional information is needed to establish the congruence?                                                      |                                                                |       |                        |        |                       |   |         |  |  |
|       | A                                                                                                                                | QR = DE                                                        | В     | ∠P = ∠F                | C      | $\angle R = \angle D$ | D | ∠Q = ∠D |  |  |
| Q. 3. | The degree of the polynomial $\frac{x^3 + x^4 - x^6}{x^2}$ .                                                                     |                                                                |       |                        |        |                       |   |         |  |  |
|       | A                                                                                                                                | 3                                                              | В     | 1                      | C      | 2                     | D | 4       |  |  |
| Q. 4. | The s                                                                                                                            | The simplest rationalizing factor of $\frac{1}{\sqrt{75}}$ is: |       |                        |        |                       |   |         |  |  |

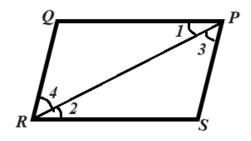

|       | A      | $4\sqrt{5}$                 | В                  | $2\sqrt{3}$                | С        | $\sqrt{3}$       | D | $5\sqrt{3}$               |
|-------|--------|-----------------------------|--------------------|----------------------------|----------|------------------|---|---------------------------|
| Q. 5. | The    | value of 525 <sup>2</sup> – | 475 <sup>2</sup> i |                            |          |                  |   |                           |
|       | A      | 100                         | В                  | 1000                       | С        | 5000             | D | 50000                     |
| Q. 6. | A rea  | l number which is n         | on-tern            | ninating and non-recurring | g decima | al expansion is: |   |                           |
|       | A      | 0.125                       | В                  | 0.121221222                | С        | 0.454545         | D | 2.478478                  |
| Q. 7. | If y = | = 3x + 5, then which        | ch of th           | ne following option is tr  | rue?     |                  |   |                           |
|       | A      | a unique<br>solution        | В                  | Two solutions              | С        | No solution      | D | Infinitely many solutions |
| Q.8.  | Acco   | ording to Euclid's          | definiti           | ion, the ends of a line ar | e;       |                  |   |                           |
|       | A      | Breadthless                 | В                  | Points                     | C        | Lengthless       | D | None of these             |
|       |        |                             |                    | $(2y-20)^{\circ}$          | A        | 7+40)°           |   |                           |
|       |        |                             |                    | Б                          |          | C                |   |                           |
|       | A      | 40                          | В                  | 60                         | C        | 80               | D | 20                        |
| Q.10. | In the | e given fig. PS⊥ 1,         | RQ⊥                | , then find the value of   |          | 35° R            |   |                           |

|                | A                                                                                                    | 55°                                                                                                                   | В                    | 90°                                        | C                                  | 80°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D                | 13                                                 | 35°             |  |
|----------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------|-----------------|--|
| Q.11.          | The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm <sup>2</sup> is: |                                                                                                                       |                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                    |                 |  |
|                | A                                                                                                    | $3\sqrt{3}$                                                                                                           | В                    | 6                                          | C                                  | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                | 71                                                 | √ <del>3</del>  |  |
| Q.12.          | The 1                                                                                                | point whose ordi                                                                                                      | nate is 4 is         | :                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                    |                 |  |
|                | A                                                                                                    | (4, -4)                                                                                                               | В                    | (4,0)                                      | C                                  | (-4, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                | (0,                                                | -4)             |  |
| Q.13.          |                                                                                                      | class marks of the                                                                                                    | e frequenc           | y distribution are 10                      | 0, 20, 30,                         | 40,The class rej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | presenti         | ng the clas                                        | S               |  |
|                | A                                                                                                    | 25 - 35                                                                                                               | В                    | 15 - 25                                    | C                                  | 5 - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                | 35                                                 | - 45            |  |
| Q.14.          | Absc                                                                                                 | rissa of a point is                                                                                                   | positive in          | n the quadrant:                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                    |                 |  |
|                | A                                                                                                    | I and II                                                                                                              | В                    | I only                                     | С                                  | III and IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                | IV a                                               | and I           |  |
|                | (i) $a + b = d + c$ .<br>(ii) $a + c + e = 180^{\circ}$<br>(iii) $b + f = c + e$ .                   |                                                                                                                       |                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                    |                 |  |
|                | (ii) a                                                                                               | $+ c + e = 180^{\circ}$                                                                                               |                      |                                            |                                    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c d              | •                                                  |                 |  |
|                | (ii) a                                                                                               | $+ c + e = 180^{\circ}$                                                                                               | В                    | (ii) only                                  | C                                  | (ii) and (iii) both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D D              | (iii)                                              | only            |  |
| Q.16.          | (ii) a (iii) b                                                                                       | $c + c + e = 180^{\circ}$<br>c + f = c + e.<br>(i) only<br>friends Annie, A                                           | misha, Ma            | nnu, Vaishu and Sal                        | har are livi                       | (ii) and (iii) both<br>ing in a hostel. At the<br>v shows their month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne end o         | f every mo                                         | onth, the       |  |
| Q.16.          | (ii) a (iii) b                                                                                       | $c + c + e = 180^{\circ}$<br>c + f = c + e.<br>(i) only<br>friends Annie, A                                           | misha, Ma            | nnu, Vaishu and Sal                        | har are livi                       | ing in a hostel. At the shows their month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne end o         | f every mo                                         | onth, the       |  |
| Q.16.          | (ii) a (iii) b                                                                                       | $c + c + e = 180^{\circ}$<br>c + f = c + e.<br>(i) only<br>friends Annie, Anlate the expenses                         | misha, Mas on food a | anu, Vaishu and Sal<br>and shopping. The t | har are livitable below            | ing in a hostel. At the v shows their month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne end o         | f every mo                                         | onth, the       |  |
| Q.16.          | (ii) a (iii) b                                                                                       | + c + e = 180° c + f = c + e.  (i) only friends Annie, A late the expenses ovember.  Name                             | misha, Mas on food a | anu, Vaishu and Sal<br>and shopping. The t | har are livi<br>able below<br>Manu | ing in a hostel. At the v shows their month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne end o         | f every monses for the Sahar 7000 Frequency polygo | onth, the       |  |
| Q.16.<br>Q.17. | (ii) a (iii) b  A  Five calculof No  Exp                                                             | + c + e = 180° c + f = c + e.  (i) only friends Annie, A late the expenses ovember.  Name penditure (in ₹)  Histogram | Annie 3000  B        | Amisha 5000  Bar Graph                     | Manu 6000                          | ing in a hostel. At the value of the value o | ne end only expe | f every monses for the Sahar 7000 Frequency polygo | onth, the month |  |


| Q.18. | In a frequency distribution, the mid value of a class is 10 and the width of the class is 6. The lower limit of the class is:                                                                                                                                  |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|------------------|--------------------|-----------------|-----------------|------------------|--|--|
|       | A                                                                                                                                                                                                                                                              | 6                                                  | В                              | 7                | C                  | 8               | D               | 12               |  |  |
|       | DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option.                                                                                                                 |                                                    |                                |                  |                    |                 |                 |                  |  |  |
| Q.19. | Stater                                                                                                                                                                                                                                                         | ment A (Assertion ment R(Reason)  ) Both assertion | : Square root                  | of a positive in | teger which is 1   | not a perfect s | square is an ir | rational number. |  |  |
|       |                                                                                                                                                                                                                                                                | reason (R) is ) Both assertion                     | the correct ex<br>(A) and reas | xplanation of as | sertion (A)<br>and |                 |                 |                  |  |  |
|       | · ·                                                                                                                                                                                                                                                            | c) Assertion (A)                                   |                                |                  |                    |                 |                 |                  |  |  |
|       |                                                                                                                                                                                                                                                                | d) Assertion (A)                                   |                                |                  |                    |                 |                 |                  |  |  |
| Q.20. | Statement A (Assertion): Each angle of an equilateral triangle is 60°.  Statement R(Reason): Angles opposite to equal sides of a triangle are equal.  a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       | b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)                                                                                                                                                   |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       | (c) Assertion (A) is true but reason (R) is false.                                                                                                                                                                                                             |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       | (d) Assertion (A) is false but reason (R) is true.                                                                                                                                                                                                             |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       | Section B                                                                                                                                                                                                                                                      |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       | (S.A-2 mark each)                                                                                                                                                                                                                                              |                                                    |                                |                  |                    |                 |                 |                  |  |  |
| Q.21. | Find the sum of 0.333 and 0.454545                                                                                                                                                                                                                             |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       | OR                                                                                                                                                                                                                                                             |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       | Simplify $(4\sqrt{3} - 3\sqrt{5})^2$                                                                                                                                                                                                                           |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       |                                                                                                                                                                                                                                                                |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       |                                                                                                                                                                                                                                                                |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       |                                                                                                                                                                                                                                                                |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       |                                                                                                                                                                                                                                                                |                                                    |                                |                  |                    |                 |                 |                  |  |  |
|       |                                                                                                                                                                                                                                                                |                                                    |                                |                  |                    |                 |                 |                  |  |  |

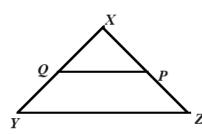
Q.22.

Observe figure and answer the following questions.




- (ii) Point identified by the coordinates of (2, -4).
- (iii) Ordinate of point H
- (iv) Points with Ordinate 2.




Q.23.

In the given figure, it is given that  $\angle 1 = \angle 4$  and  $\angle 3 = \angle 2$ . By which Euclid's axiom, it can be shown that if  $\angle 2 = \angle 4$ , then  $\angle 1 = \angle 3$ .



OR

In the given figure, if  $OX = \frac{1}{2}XY$ ,  $PX = \frac{1}{2}XZ$  and OX = PX, show that XY = XZ.



Q.24.

Check whether (2x + 1) is a factor of the polynomial  $f(x) = x^3 - 2x^2 + x - 1$ .

OR

Factorize:  $3x^2 + 2y^2 + 18 - 2\sqrt{6}xy - 12y + 6\sqrt{6}x$ .

The following histogram shows the heights of students of a class: Q.25. Read the histogram and answer the following questions: 20 Number of students 125 130 135 140 145 150 155 160 Height (in cm) (i) What is the width of the class? (ii) Which is the class interval having the highest frequency? (iii) How many students have height less than 140 cm? (iv) How many students have height 140 cm and more but less than 155 cm? **Section- C** (S.A-3 mark each)  $\triangle$ ABC is an isosceles triangle in which AB = AC. Q.26. Side BA is produced to D such that AD = AB. Show that  $\angle$  BCD is a right angle.

| Q.27. | Factorize $216x^3 + \frac{1}{125}$ OR                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Find the value of $ab + bc + ca$ , if $a + b + c = 9$ and $a^2 + b^2 + c^2 = 35$ .                                                                                          |
| Q.28. | The perimeter of a triangular garden is 900cm and its sides are in the ratio 3:5:4. Using Heron's formula, find the area of triangular garden.                              |
| Q.29. | State any three Euclid's Postulates.                                                                                                                                        |
| Q.30. | Plot the points A (1,3), B (1, -1), C (7,-1) and D (7, 3) in cartesian plane. Join them in order and name the figure so obtained.                                           |
| Q.31. | In the given figure, if PQ $\perp$ PS, PQ $\parallel$ SR, $\angle$ SQR = 28° and $\angle$ QRT = 65°, then find the values of x y and z respectively.                        |
|       | $\begin{array}{c} P \\ \hline                                 $                                                                                                             |
|       | In Fig. POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$ . |
|       | $S^{\frac{1}{p}}$ $Q$                                                                                                                                                       |

| Section- D | S | ection- | D |
|------------|---|---------|---|
|------------|---|---------|---|

(L.A-5 mark each)

- Q.32. Rationalise the denominator and find the value of a and b:  $\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} \frac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = a+b\sqrt{6}$
- Q.33. Factorise:  $2x^3 9x^2 + x + 12$

OR

If x = 2 and x = 0 are zeros of the polynomial  $2x^3 - 5x^2 + px + b$ , then find the value of p and b.

Q.34. Prove that two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of another triangle.

OR

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B.

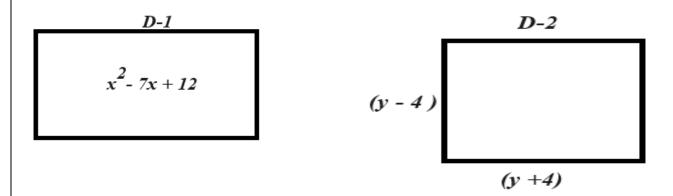
Show that:

- (i)  $\Delta AMC \cong \Delta BMD$
- (ii) ∠ DBC is a right angle.
- (iii)  $\Delta$  DBC  $\cong$   $\Delta$  ACB



Q.35.

Draw a histogram for the following frequency distribution.


| Marks     | 0 - 20 | 20 - 30 | 30 – 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 100 |
|-----------|--------|---------|---------|---------|---------|---------|----------|
| No. of    | 5      | 4       | 3       | 8       | 4       | 15      | 8        |
| students: |        |         |         |         |         |         |          |

# Section- E (CASE STUDY BASED QUESTIONS-4mark each)

## Q.36. CASE STUDY-I POLYNOMIALS

Forests still cover about 30 per cent of the world's land area but they are disappearing at an alarming rate. between 1990 forest according to the study in the "journal nature". about 17 per cent of the Amazonian rainforest has been destroyed sample 1 square sample 2 rectangle sample 3 rectangle over the past 50 years. madhuban art gallery organized an exhibition to create awareness about afforestation with title "पेड़ लगाओ, सुखी हो जाओ" to raise the fund which is to be given for environment protection. they have asked people to come with their innovative painting and given size of painting in form of square and rectangle.

Answer the following questions on the basis of the of above information.



Based on the above information, answer the following questions.

- (i) Find the length and breadth of the rectangle D-1 (1m)
- (ii) Find the area of the rectangle D-2 (1m)
- (iii) Expand  $(3x 2y + 7)^2$  OR

Evaluate  $(97)^3$  by using proper identity. (2m)

Q.37.

#### **CASE STUDY-II**

On his birthday, Manoj planned that this time he celebrates his birthday in a small orphanage centre. He bought apples to give to children and adults working there. Manoj donated 2 apples to each child and 3 apples to each adult working there along with birthday cake. He distributed 60 total apples.



Based on the above information, answer the following questions with reasons.

- (i) How to represent the above situation in linear equations in two variables by taking the number of children as 'x' and the number of adults as 'y'? (1m)
- (ii) Write any two solutions of the equation x + 2y = 4 (1m)
- (iii) Find the value of b, if x = 5, y = 3 is a solution of the equation 5y + 3x = b. And write the value of a, b and c. (2m)

OR

If the number of children is 15, then find the number of adults? Also, write the linear equation in standard form.

### Q.38. CASE STUDY-III

UFO's are any unexplained moving object observed in the sky, especially one assumed by some observers to be of extraterrestrial (coming from a place outside the earth) origin. Rahul a student of class IX has an interest in a Space Science. So, he makes a model of a triangular shape of UFO which is shown in the below figure. The measurement of the sides of UFO are in the ratio 5:5:8 and its perimeter is 180 cm respectively.



- (i) What is the measure of the sides of the triangular UFO? (1m)
- (ii) Find the semi perimeter of the given UFO shape. (1m)
- (iii) What is the area of the UFO?

OR (2m)

Find the total cost to make the UFO, if the rate of the material is  $\ge$  800 per cm<sup>2</sup>.

|      | ANSWERS                                                                                   |      |                                                                                     |      |                                                                                   |      |                                                                                                       |  |  |
|------|-------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------|--|--|
| Q.1  | А                                                                                         | Q.2  | В                                                                                   | Q.3  | D                                                                                 | Q.4  | С                                                                                                     |  |  |
| Q.5  | D                                                                                         | Q.6  | В                                                                                   | Q.7  | D                                                                                 | Q.8  | В                                                                                                     |  |  |
| Q.9  | Α                                                                                         | Q.10 | С                                                                                   | Q.11 | В                                                                                 | Q.12 | С                                                                                                     |  |  |
| Q.13 | А                                                                                         | Q.14 | D                                                                                   | Q.15 | С                                                                                 | Q.16 | В                                                                                                     |  |  |
| Q.17 | А                                                                                         | Q.18 | В                                                                                   | Q.19 | А                                                                                 | Q.20 | А                                                                                                     |  |  |
| Q.21 | $\frac{\frac{26}{33}}{33}$ OR (93 - 24 $\sqrt{15}$                                        | Q.22 | (i)D(6,2),<br>(ii)G,<br>(iii)Ordinate<br>of H=-3,<br>(iv) <i>D</i> and <i>B</i>     | Q.23 | Proof                                                                             | Q.24 | Not a factor<br>OR<br>$(\sqrt{3} x - \sqrt{2}y + 3\sqrt{2})^2$                                        |  |  |
| Q.25 | (i) 5<br>(ii) 135- 140<br>(iii)35 (iv)46                                                  | Q.26 | Proof                                                                               | Q.27 | $(6x + \frac{1}{5}) \times$<br>$[6x^2 - \frac{6}{5}x + \frac{1}{25}]$<br>OR<br>23 | Q.28 | 33750 m <sup>2</sup>                                                                                  |  |  |
| Q.29 | Any three                                                                                 | Q.30 | Graph                                                                               | Q.31 | Z=115°,x =37°,<br>Y=53°,<br>or<br>Proof                                           | Q.32 | a =0, b= -4                                                                                           |  |  |
| Q.33 | (x+1)((x-4)(2x-3)<br>OR<br>P=2, b=0                                                       | Q.34 | Proof                                                                               | Q.35 | Graph                                                                             | Q.36 | i) $((x-4)and(x-3)$<br>ii) $y^2 - 16$<br>iii) $9x^2 + 4y^2 + 49 - 12xy - 28y + 42x$<br>OR<br>9,12,673 |  |  |
| Q.37 | i)2x + 3y = 60<br>ii)Any two solutions<br>iii)30<br>3x + 5y - 30 = 0,<br>a=3, b=5, c= -15 | Q.38 | i)50cm,<br>50cm and<br>80cm<br>ii)90cm<br>iii)1200cm <sup>2</sup><br>or<br>₹ 960000 |      |                                                                                   |      |                                                                                                       |  |  |