INDIAN SCHOOL AL WADI AL KABIR

Post Mid-Term Revision Paper (2023-24)
Sub: MATHEMATICS
Max Marks: 80
Time:3 hours

Date: 20/11/2023

General Instructions:

1. This question paper is divided into 5 sections- A, B, C, D and E.
2. Section A-(MCQ) comprises of 18 questions of 1 mark each and 2 Assertion Reasoning questions of 1 mark each.
3. Section B-(Short answer) comprises of 5 questions of 2 marks each.
4. Section C-(Long answer) comprises of 6 questions of 3 marks each.
5. Section D- (Long answer) comprises of 4 questions of 5 marks each.
6. Section E-Comprises of 3 Case study-based questions of 4 marks each with sub parts of the values of 1,1 and 2 marks each respectively.
7. All questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

Section A

PART-1(MCQ-1 mark each)

Q.1.	The value of $\sqrt[4]{625^{-2}}$ is:							
	A	$\frac{1}{25}$	B	$\frac{1}{50}$	C	50	D	25
Q.2.	By applying SAS congruence rule, you want to establish that $\triangle \mathrm{PQR} \cong \Delta \mathrm{FED}$. It is given that $\mathrm{PQ}=\mathrm{FE}$ and $\mathrm{RP}=\mathrm{DF}$. What additional information is needed to establish the congruence?							
	A	$\mathrm{QR}=\mathrm{DE}$	B	$\angle \mathrm{P}=\angle \mathrm{F}$	C	$\angle \mathrm{R}=\angle \mathrm{D}$	D	$\angle \mathrm{Q}=\angle \mathrm{D}$
Q. 3.	The degree of the polynomial $\frac{x^{3}+x^{4}-x^{6}}{x^{2}}$							
	A	3	B	1	C	2	D	4
Q. 4.	The simplest rationalizing factor of $\frac{1}{\sqrt{75}}$ is:							

	A	$4 \sqrt{5}$	B	$2 \sqrt{3}$	C	$\sqrt{3}$	D	$5 \sqrt{3}$
Q. 5.	The value of $525^{2}-475^{2}$ is:							
	A	100	B	1000	C	5000	D	50000
Q. 6.	A real number which is non-terminating and non-recurring decimal expansion is:							
	A	0.125	B	0.121221222...	C	0.454545....	D	2.478478
Q. 7.	If $y=3 x+5$, then which of the following option is true?							
	A	a unique solution	B	Two solutions	C	No solution	D	Infinitely many solutions
Q.8.	According to Euclid's definition, the ends of a line are;							
	A	Breadthless	B	Points	C	Lengthless	D	None of these
Q.9.		iven figure,	is	The value of y	A	$\xrightarrow{>}$		
	A	40	B	60	C	80	D	20
Q.10.		iven fig. PS \perp	Q	n find the value		$\rightarrow l$		

	A	55°	B	90°	C	C	80°	D	135°
Q.11. The length of each side of an equilateral triangle having an area of $9 \sqrt{3} \mathrm{~cm}^{2}$ is:	The length of each side of an equilateral triangle having an area of $9 \sqrt{3} \mathrm{~cm}^{2}$ is:								
	A	$3 \sqrt{3}$	B	6	C	C	36	D	$7 \sqrt{3}$
Q.12.	The point whose ordinate is 4 is:								
	A	$(4,-4)$	B	$(4,0)$	C	C	$(-4,4)$	D	$(0,-4)$
Q.13.	The class marks of the frequency distribution are $10,20,30,40, \ldots \ldots$. The class representing the class mark 30 is:								
	A	25-35	B	15-25	C	C	5-15	D	35-45
Q.14.	Abscissa of a point is positive in the quadrant:								
	A	I and II	B	only	C	C	III and IV	D	IV and I
Q.15.	In the figure which of the following statements is true? (i) $a+b=d+c$. (ii) $a+c+e=180^{\circ}$ (iii) $b+f=c+e$.								
	A	(i) only	B	(ii) only	C	C	(ii) and (iii) both	D	(iii) only
Q.16.	Five friends Annie, Amisha, Manu, Vaishu and Sahar are living in a hostel. At the end of every month, they calculate the expenses on food and shopping. The table below shows their monthly expenses for the month of November.								
		Name	Anni	Amisha		Manu	Vaishu		har
	Expenditure (in ₹)		3000	5000	6000		4500	7000	
	A	Histogram	B	Bar Graph	C	C	Frequency Polygon	D	Frequency polygon with histogram
Q.17.	It is known that if $\mathrm{x}+\mathrm{y}=10$ then $\mathrm{x}+\mathrm{y}+\mathrm{z}=10+\mathrm{z}$. The Euclid's axiom that illustrates this statement is:								
	A	2nd Axiom	B	1st Axiom	C	C	3rd Axiom	D	4th Axiom

Q.25.	The following histogram shows the heights of students of a class: Read the histogram and answer the following questions: (i) What is the width of the class? (ii) Which is the class interval having the highest frequency? (iii) How many students have height less than 140 cm ? (iv) How many students have height 140 cm and more but less than 155 cm ?
	Section- C (S.A-3 mark each)
Q.26.	$\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side BA is produced to D such that $\mathrm{AD}=\mathrm{AB}$. Show that $\angle B C D$ is a right angle.

Q.27.	Factorize $216 x^{3}+\frac{1}{125}$ OR Find the value of $a b+b c+c a$, if $a+b+c=9$ and $a^{2}+b^{2}+c^{2}=35$.	
Q.28.	The perimeter of a triangular garden is 900 cm and its sides are in the ratio $3: 5: 4$. Using Heron's formula, find the area of triangular garden.	
Q.29.	State any three Euclid's Postulates.	
Q.30.	Plot the points $\mathrm{A}(1,3), \mathrm{B}(1,-1), \mathrm{C}(7,-1)$ and $\mathrm{D}(7,3)$ in cartesian plane. Join them in order and name the figure so obtained.	
Q.31.	In the given figure, if $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \\| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$, then find the values of x y and z respectively. In Fig. POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR Prove that $\angle \operatorname{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$.	

	Section- D(L.A-5 mark each)							
Q.32.	Rationalise the denominator and find the value of a and $b: \frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}-\frac{3 \sqrt{2}+2 \sqrt{3}}{3 \sqrt{2}-2 \sqrt{3}}=a+b \sqrt{6}$							
Q.33.	Factorise: $2 x^{3}-9 x^{2}+x+12$ OR If $\mathrm{x}=2$ and $\mathrm{x}=0$ are zeros of the polynomial $2 x^{3}-5 x^{2}+p x+b$, then find the value of p and b .							
Q.34.	Prove that two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of another triangle. OR In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B$. C is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B. Show that: (i) $\quad \triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$ (ii) $\angle D B C$ is a right angle. (iii) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$							
Q.35.	Draw a histogram for the following frequency distribution.							
	Marks	0-20	20-30	30-40	40-50	50-60	60-70	70-100
	No. of students:	5	4	3	8	4	15	8

ANSWERS							
Q. 1	A	Q. 2	B	Q. 3	D	Q. 4	C
Q. 5	D	Q. 6	B	Q. 7	D	Q. 8	B
Q. 9	A	Q. 10	C	Q. 11	B	Q. 12	C
Q. 13	A	Q. 14	D	Q. 15	C	Q. 16	B
Q. 17	A	Q. 18	B	Q. 19	A	Q. 20	A
Q. 21	$\begin{gathered} \frac{26}{33} \text { OR } \\ (93-24 \sqrt{15} \end{gathered}$	Q. 22	(i) $\mathrm{D}(6,2)$, (ii)G, (iii) Ordinate of $\mathrm{H}=-3$, (iv) D and B	Q. 23	Proof	Q. 24	$\begin{gathered} \text { Not a factor } \\ \text { OR } \\ (\sqrt{3} x-\sqrt{2} y+3 \sqrt{2})^{2} \end{gathered}$
Q. 25	(i) 5 (ii) 135-140 (iii)35 (iv)46	Q. 26	Proof	Q. 27	$\begin{aligned} & \left(6 \mathrm{x}+\frac{1}{5}\right) \times \\ & {\left[6 x^{2}-\frac{6}{5} \mathrm{x}+\frac{1}{25}\right]} \\ & \text { OR } \\ & 23 \end{aligned}$	Q. 28	$33750 \mathrm{~m}^{2}$
Q. 29	Any three	Q. 30	Graph	Q. 31	$\begin{aligned} & Z=115^{\circ}, x=37^{\circ}, \\ & Y=53^{\circ}, \end{aligned}$ or Proof	Q. 32	$a=0, b=-4$
Q. 33	$\begin{aligned} & (x+1)((x-4)(2 x-3) \\ & \text { OR } \quad P=2, b=0 \end{aligned}$	Q. 34	Proof	Q. 35	Graph	Q. 36	i) $((x-4) \operatorname{and}(x-3)$ ii) $y^{2}-16$ iii) $9 x^{2}+4 y^{2}+49-$ $12 x y-28 y+42 x$ OR $9,12,673$
Q. 37	i) $2 x+3 y=60$ ii)Any two solutions iii)30 $\begin{gathered} 3 x+5 y-30=0 \\ a=3, b=5, c=-15 \end{gathered}$	Q. 38	i) 50 cm , 50 cm and 80 cm ii) 90 cm iii) $1200 \mathrm{~cm}^{2}$ or ₹ 960000				

